

No Reference Opinion Unaware Quality **Assessment of Authentically Distorted Images**

Nithin C Babu, Vignesh Kannan and Rajiv Soundararajan

Background and motivation

- Image Quality Assessment (IQA)
- Analysis of the perceptual quality of an image affected by distortions.
- Applications Image enhancement, restoration, and compression.

- We focus on designing deep quality features in a completely blind **IQA** framework. Our main **contributions** are:
 - A two-stage self supervised quality feature learning approach
- The use of **only positives** in contrastive learning while training on authentically distorted images.
- Mutual information based loss function to mitigate content dependence.
- **Improved** version of **variational approximation** used while estimating the mutual information loss.

Quality feature learning

Synthetic data pre-training

- Start with a **pre-trained network**
 - M-SCQALE [1] performs **contrastive learning** on synthetically distorted images.
 - Push and pull features from differently distorted images.

Reducing Content dependence

- Working with only positives can learn the content correlation between two patches.
- Minimize mutual information between quality features and content information using **Contrastive Log-ratio upper** bound (CLUB) [3].

Improved variational approximation

- According to the authors of CLUB, θ should be updated such that $q_{\theta}(Y, Z)$ is similar to p(Y,Z), than to p(Y)p(Z).
- Does not guarantee if p(Y)p(Z) is different from $q_{\theta}(Y, Z)$.

CLUB (Log-Likelihood Loss)

Our work (Contrastive Likelihood Loss)

 $\min_{\boldsymbol{\alpha}} \{ \mathrm{KL}(p(\boldsymbol{Y}, \boldsymbol{Z}) \| q_{\boldsymbol{\theta}}(\boldsymbol{Y}, \boldsymbol{Z})) \}$

 $\min_{\boldsymbol{\rho}} \{ \mathrm{KL}(p(Y, \boldsymbol{Z}) \| q_{\boldsymbol{\theta}}(Y, \boldsymbol{Z})) \}$ $-\operatorname{KL}(p(Y)p(\mathbb{Z})||q_{\theta}(Y,\mathbb{Z}))\}$

Completely blind quality prediction

- Fit MVG models to quality features of:
 - input image patches
 - corpus of sharp and colorful pristine patches.
- Quality score computed as a distance between distributions.

Results and performance comparisons

Datasets	CLIVE		KonIQ		FLIVE		CID	
Method	SRCC	PLCC	SRCC	PLCC	SRCC	PLCC	SRCC	PLCC
NIQE	0.46	0.48	0.53	0.54	0.21	0.29	0.23	0.22
IL-NIQE	0.44	0.49	0.51	0.53	0.22	0.27	0.31	0.40
CORNIA*	0.07	0.07	0.04	0.02	0.05	0.13	0.27	0.29
CONTRIQUE*	0.38	0.42	0.63	0.61	0.26	0.29	0.74	0.76
Proposed	0.51	0.52	0.65	0.64	0.30	0.33	0.64	0.66

■ Synthetic ■ + Authentic ■ + MI Loss Log-Likelihood Contrastive Likelihood References Kannan et al. "Quality Assessment of Low Light Restored Images: A Subjective Study and an Unsupervised Model." arXiv preprint 2022 Chen et al. "Exploring simple siamese representation learning." CVPR 2021 [2] Cheng et al. "CLUB: A contrastive log-ratio upper bound of mutual [3] information." ICML 2020