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Assessment of Authentically Distorted Images
Nithin C Babu, Vignesh Kannan and Rajiv Soundararajan

Background and motivation

* Image Quality Assessment (IQA) /= meeersmaan )| *  We focus on designing deep quality features in a completely blind

- Analysis of the perceptual quality omen  ——y IQA framework. Our main contributions are:
of an image affected by distortions. |~ ..~ "y T‘a-'ﬂ'fg- -------- | * A two-stage self supervised quality feature learning approach
* Applications - Image enhancement, * The use of only positives in contrastive learning while training on
restoration, and compression. ol authentically distorted images.
- * Mutual information based loss function to mitigate content
dependence.
e Puamy * Improved version of variational approximation used while
N s estimating the mutual information loss.
Quality feature learning
o Synthetic data pre-training g Reducing Content dependence
o Start with a pre-trained network * Working with only positives — can learn the content
* M-SCQALE [1] — performs contrastive learning on correlation between two patches.
synthetically distorted images. *  Minimize mutual information between quality features and
* Push and pull features from differently distorted images. content information using Contrastive Log-ratio upper
bound (CLUB) [3].
@ Authentic data finetuning Iorus(Y; Z) = Eyy 2 [log p(Y|Z)] — By Bz [log p(Y|2)]

» Authentically distorted images: no way of finding negatives. lowws(Y;2) 2 1(Y; Z)

* We adopt the SimSiam [2] framework which works with only

Estimated using a variational approximation gg(.) as:

positives. — - ;
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@ Improved variational approximation
* According to the authors of CLUB, 6 should
be updated such that gg(V, Z) is similar to CLUB (Log-Likelihood Loss) min {KL(p(Y', Z)|lga(Y', 2)) }
p(Y,Z), than to p(Y)p(Z).
. : e A . g0 n{KL(p(Y, Z Y. Z
Does not guarantee if p(¥)p(Z) is different  oyr work (Contrastive Likelihood Loss) mgm{ (p(Y, Z)lgo(Y, 2))
from qq (Y, 7). — KL(p(Y)p(Z)|lge(Y, Z2)) }
Completely blind quality prediction Results and performance comparisons
: Datasets CLIVE KonlQ FLIVE CID
| Pristine Images Method SRCC [ PLCC |[ SRCC [ PLCC || SRCC [ PLCC || SRCC | PLCC
 Fit MVG models to NIQE 0.46 | 0.48 || 053 | 054 || 021 | 029 || 023 | 022
- ) : IL-NIQE 0.44 0.49 0.51 0.53 0.22 0.27 0.31 0.40
quality features of: I v ant - CORNIA* || 0.07 | 0.07 | 0.04 | 0.02 || 005 | 013 || 0.27 | 0.29
* input image patches E i eslechon CONTRIQUE* || 038 | 042 | 063 | 061 | 026 | 029 || 0.74 | 0.76
e corpus of sharp and ﬁ é ﬁ Proposed 0.51 | 0.52 0.65 | 0.64 0.30 | 0.33 0.64 0.66
Colorful prIStIne patCheS ~ ¢ S ¢ ¢ ¢ e ¢ . Strength of different components ) Variational Approximation
* Quality score computed as a | ) ]
distance between v v v o v v v § I . 5 I 3 I
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